Magnetic stimulation of muscle evokes cerebral potentials.

نویسندگان

  • Y Zhu
  • A Starr
چکیده

Somatosensory evoked potentials (SEPs) were recorded from the scalp in man to magnetic stimulation of various skeletal muscles. The potentials consisted of several components, the earliest of which decreased in latency as the stimulated site moved rostrally, ranging from 46 msec for stimulation of the gastrocnemius, to 14 msec for stimulation of the deltoid. Experiments were performed to distinguish the mechanisms by which magnetic stimulation of the muscle was effective in evoking these cerebral potentials. For the gastrocnemius, the intensity of the magnetic stimulus needed for evoking cerebral potentials was less than that required for activating mixed or sensory nerves in proximity to the muscle belly (eg, posterior tibial nerve in the popliteal fossa, sural nerve at the ankle). Vibration of the muscle or passive lengthening of the muscle, procedures which activate muscle spindles, were accompanied by a significant attenuation of the potentials evoked by magnetic stimulation of the muscle. Anesthesia of the skin underlying the stimulating coil had no effect on the latency or amplitude of the early components of the magnetically evoked potentials, whereas electrically evoked potentials from skin electrodes were abolished. Thus, the cerebral potentials accompanying magnetic stimulation of the muscle appear to be due to activation of muscle afferents. We suggest that magnetic stimulation of muscle can provide a relatively simple method for quantifying the function of muscle afferents originating from a wide variety of skeletal musculature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal

Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...

متن کامل

Focal stimulation of the thalamic reticular nucleus induces focal gamma waves in cortex.

Electrical stimulation of the thalamic reticular nucleus (TRN; 0.5-s trains of 500-Hz 0.5-ms pulses at 5-10 microA) evokes focal oscillations of cortical electrical potentials in the gamma frequency band ( approximately 35-55 Hz). These evoked oscillations are specific to either the somatosensory or auditory cortex and to subregions of the cortical receptotopic map, depending on what part of th...

متن کامل

Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation.

Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studi...

متن کامل

Transcranial Magnetic Stimulation Evokes Giant Inhibitory Potentials in Children

The electroencephalographic response to transcranial magnetic stimulation (TMS) recently has been established as a direct parameter of motor cortex excitability. Its N100 component was suggested to reflect an inhibitory response. We investigated influences of cerebral maturation on TMS-evoked N100 in 6to 10-year-old healthy children. We used a forewarned reaction time (contingent negative varia...

متن کامل

What Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity.

Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) evokes several volleys of corticospinal activity. While the earliest wave (D-wave) originates from axonal activation of cortico-spinal neurons (CSN), later waves (I-waves) result from activation of mono- and polysynaptic inputs to CSNs. Different coil orientations preferentially stimulate cortical elements evoking differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Muscle & nerve

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 1991